The Application of Genomic Resources in Wheat Breeding
• 17 Gb genome
• 42 chromosomes
• 100,000 genes
• Highly repetitive
• Allopolyploid
What Do Genome Sequences Offer?

• A resource for reference based mapping
 • Unlimited source of DNA markers for MAS/genomic selection

• Physical intervals for quantitative trait loci

• A roadmap of genes

• Candidate genes for traits = perfect markers

• Discovery and exploitation of new alleles
What is Genomics?

The study of genomes and their function

- **Structural genomics**: Examines the physical nature of genomes
- **Comparative genomics**: Compares the structure of genomes within/between different individuals or species
- **Functional genomics**: Studies expression and function of the genome
Cost to Sequence a Human Genome

-99.999%
Priorities in Wheat Breeding

• Increase Yields – **Profitability**
• Durable disease and pest resistance – **Yield Stability**
 • Wheat Rusts – new virulence
 • FHB – symptoms/mycotoxins,
 • insect pests (midge, sawfly)
• Abiotic stresses
 • Drought, heat stress
• Nutrient use efficiency
• End-use quality - **Marketability**
Annual Yield Gains Lag Future Demand

- **Genetic gain**: 0.8% / year
- **On farm yield**: 1.5% / year
- **Global need by 2050**: 2.4% / year
Bridging the Yield Gap With Genomics
Harnessing the Diversity of Wheat

2018 - Chinese Spring Genome

Decreasing Sequence Contiguity

10 Genomes
- Core and Pan Genomes
100 Genomes
- 10X Genomics
- Structural/PAV
1000 Genomes
- Low coverage WGS
- Haplotypes
10,000 Genomes
- Exome Sequencing
- RNA Seq
- Reduced representation
- SNPs/Alleles

http://www.10wheatgenomes.com/
Genotyping

Single Marker:
- Agarose Gel
 - SSR (short sequence repeat)
 - CAPS (cleaved amplified polymorphic sequence)
- Fluorescent Dye
 - KASP (kompetative allele specific PCR)

Marker Arrays:
- 9K SNP array (Illumina)
- 90k SNP iSelect array (Illumina)
- 820k SNP array (Axiom)
- Breeder array

Sequencing:
- GBS (genotype by sequencing)
- Exome (gene space from genomic DNA)
- RNAseq (gene space from mRNA)
Marker Assisted Selection

Unlocking Global Genetic Diversity

Genomic Diversity Analysis:
Narrowing genetic diversity an issue for evolving pests and pathogens of wheat
Predictive Selection

Genotyping

Phenotypic Data

Multivariate Statistics

Predictive Models

Actual vs. Predicted Yield

PREDICTIVE BREEDING
Summary: Impact of Genomics on Breeding

• Reference sequences are the starting point for integrated genomics

• Characterizing the full diversity of the species, and wild relatives

• Identifying the function of genes, and assigning marker trait associations

• Shift in towards predictive breeding strategies combined with classical plant breeding approaches
Acknowledgements

Dr. Ron MacLachlan
Dr. Amidou N'Diaye
Dr. John Clarke
Dr. Aron Cory
Dr. Sean Walkowiak
Krysta Wiebe
Jennifer Ens
Lexie Martin
Justin Coulson
Russel Lawrie
Ryan Babonich
Heidi Lazorko
Vinh Tang
Dr. Karen Tanino
Dr. Ian Willick
Dr. Prakash Venglat

Dr. Brian Beres
Dr. Yuefeng Ruan
Dr. Fran Clarke
Dr. Richard Cuthbert
Dr. Ron Knox
Dr. Steve Robinson

Dr. Andrew Sharpe
Dr. Kevin Koh

Funding provided by:
Robert P. Knowles Scholarship
Earl Davis Mallough Scholarship
Gerhard Rakow Memorial Award